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We consider a lattice equation �Salerno model� combining onsite self-focusing and intersite self-defocusing
cubic terms, which may describe a Bose-Einstein condensate of dipolar atoms trapped in a strong periodic
potential. In the continuum approximation, the model gives rise to solitons in a finite band of frequencies, with
sechlike solitons near one edge, and an exact peakon solution at the other. A similar family of solitons is found
in the discrete system, including a peakon; beyond the peakon, the family continues in the form of cuspons.
Stability of the lattice solitons is explored through computation of eigenvalues for small perturbations, and by
direct simulations. A small part of the family is unstable �in that case, the discrete solitons transform into robust
pulsonic excitations�; both peakons and cuspons are stable. The Vakhitov-Kolokolov criterion precisely ex-
plains the stability of regular solitons and peakons, but does not apply to cuspons. In-phase and out-of-phase
bound states of solitons are also constructed. They exchange their stability at a point where the bound solitons
are peakons. Mobile solitons, composed of a moving core and background, exist up to a critical value of the
strength of the self-defocusing intersite nonlinearity. Colliding solitons always merge into a single pulse.
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I. INTRODUCTION

It is commonly known that the dynamics of nonlinear
lattices are drastically different in generic nonintegrable sys-
tems, a paradigmatic example being the discrete nonlinear
Schrödinger �DNLS� equation �see reviews �1�� and in ex-
ceptional integrable models, a famous example of the latter
being the Ablowitz-Ladik �AL� equation �2�. Only in the
latter case are exact solutions for soliton families available.
In nonintegrable systems solitons are sought in a numerical
form �1� or by means of a variational approximation �3�. As
the difference between the DNLS and AL equations is in the
type of the nonlinear terms—onsite or intersite—it was quite
natural to show a combined model that includes the cubic
terms of both types, and thus allows one to consider a con-
tinuous transition between the AL and DNLS equations. The
combined equation, known as the Salerno model �SM� �4�, is

i�̇n = − ��n+1 + �n−1��1 + ���n�2� − 2���n�2�n, �1�

where �n is the complex field amplitude at the nth site of the
lattice, the overdot stands for the time derivative, and real
coefficients � and � account for the nonlinearities of the AL
and DNLS types, respectively.

The SM was studied in a number of other works �see
Refs. �5–8� and references therein�. It is known that it con-
serves the norm and Hamiltonian,

N =
1

�
�

n

ln��1 + ���n�2�� , �2�

H = �
n
�− ��n�n+1

* + �n+1�n
*� − 2

�

�
��n�2

+ 2
�

�2 ln��1 + ���n�2��� . �3�

In the above-mentioned works, it has been demonstrated
that Eq. �1� gives rise to static �and, sometimes, moving
�6–8�� solitons at all values of the DNLS parameter �, and all
positive values of the AL coefficient, �. If � is negative, one
can make it positive by means of the staggering transforma-
tion, �n→ �−1�n�n, and then setting �	 +1, by the rescaling
�n→�n /
� �unless �=0�. However, the sign of � cannot be
altered. In particular, the AL model proper ��=0� with
��0 does not give rise to solitons. The latter circumstance
suggests considering soliton dynamics in the SM with
��0, i.e., with competing nonlinearities, which is the sub-
ject of the present work. In this connection, it is necessary to
stress that expressions �2� and �3� for the SM’s dynamical
invariants remain valid if 1+� ��n�2 takes negative values at
some sites, due to ��0.

While the SM was originally introduced in a rather ab-
stract context, it has recently found direct physical realiza-
tion, as an asymptotic form of the Gross-Pitaevskii equation
describing a Bose-Einstein condensate of bosonic atoms with
magnetic momentum trapped in a deep optical lattice �9�. In
that case, the onsite nonlinearity is generated, as usual, by
collisions between atoms, while the intersite nonlinear terms
account for the long-range dipole-dipole interactions. Note
that the latter interaction may be attractive ���0� or repul-
sive ���0�, if the external magnetic field polarizes the
atomic momentum along the lattice or perpendicular to it,
respectively.
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This report is organized as follows. In Sec. II we develop
a continuum approximation �CA�, and investigate the corre-
sponding solitons in an analytical form. It is found that al-
though they might exist in a semi-infinite band of frequen-
cies, they actually occupy a finite band, with an exact peakon
solution at the edge of the band. A family of discrete solitons
is constructed by means of numerical-continuation methods
in Sec. III. They form a family of regular solitons, including
a peakon, similar to what was found in the CA, but the lattice
solitons extend beyond the peakon in the form of cuspons. In
Sec. III A, the soliton stability is explored by means of stan-
dard Floquet analysis �computation of perturbation eigenval-
ues or Floquet multipliers� and in direct simulations, with the
conclusion that only a small part of the family is unstable.
Two-soliton bound states are reported in Sec. III B, where it
is demonstrated that the stability exchange between in-phase
and out-of-phase states occurs at a point where the bound
solitons are peakons. Moving solitons are considered in Sec.
IV, where it is found that they exist up to a critical strength of
the intersite self-defocusing nonlinearity, and collisions be-
tween them always lead to fusion into a single soliton. The
paper is concluded in Sec. V.

II. CONTINUUM LIMIT

To introduce the CA in Eq. �1�, we define ��x , t�
	e2it��x , t�, and expand �n±1��±�x+ �1/2��xx, where
� is now treated as a function of the continuous coordinate
x, which coincides with n when it takes integer values. After
that, the continuum counterpart of Eq. �1� is derived,

i�t = − 2�1 − �������2� − �1 − ������2��xx, �4�

where we have set �= +1 and ��0, as stated above. Equa-
tion �4� conserves the norm and Hamiltonian, which are
straightforward counterparts of expressions �2� and �3�,

Ncont =
1

�
�

−�

+�

dx ln�
1 − ������2
� , �5�

Hcont = �
−�

+� ���x�2 + 2� 1

���
− 1����2

+
2

�2 ln�
1 − ������2
�� . �6�

Soliton solutions to Eq. �4� are sought as �=e−i�tU�x�, with
a real function U obeying the equation

d2U

dx2 = −
� + 2�1 − ����U2

1 − ���U2 U , �7�

which may give rise to solitons, provided that ��0 and
�� � �1. �The absence of solitons for �� � �1 implies that if
the intersite self-defocusing, accounted for by ��0, is stron-
ger than the onsite self-focusing, the self-trapping of solitons
is impossible in the CA.� Equation �7� can be cast in the form
��1/ �� � �−1�−1Uxx� =−W��U�, where the effective potential is

W = −
1

2
U2 −

1 − 	

2���
ln�1 − ���U2�, 	 	

��

1 − ���
. �8�

The expansion of the potential �8� for U2→0 is
W��−	U2+ �� � �1−	�U4� /2. This form of the equation
shows that solitons exist in a finite band of frequencies,
0�	�1, rather than in the entire semi-infinite band,
	�0, where the linearization of Eq. �7� produces exponen-
tially decaying solutions that could serve as the solitons’
tails. The reduction of the semi-infinite band to a finite one is
typical for soliton families in models with competing nonlin-
earities, such as the cubic-quintic NLS equation �10�.
Further, it follows from the divergence of potential �8� at
U2=1/ ��� that the solitons’ amplitude A, which is a monoto-
nously increasing function of 	, is smaller than 1/
��� for
0�	�1, and A=1/
��� at 	=1.

Solitons can be found in an explicit form near the
edges of the existence band; at small ��� �i.e., small 	�,
U�x��
�� � / �1− �� � �sech�
2 ���x�, while precisely at the
opposite edge of the band, �=1−1/ ��� �i.e., 	=1�, the exact
solution is a peakon,

Upeakon = �1/
����exp�− 
�1/���� − 1�x�� . �9�

In other words, at a given frequency �, the peakon solution
is found at

��� = ��p� 	 1/�1 − �� . �10�

Note that norm �5� of the peakon is 
2 / �6
�� � �1− �� � ��, and
its energy is also finite. Close to this point, i.e., for
0�1−	�1, the solution is different from the limiting form
�9� in a narrow interval �x � �
�� � / �1− �� � ��1−	�, where
the peak is smoothed.

Finally, the CA based on Eq. �4� is valid if the intrinsic
scale of all continuum solutions, that may be estimated
through the curvature of the soliton’s profile at x=0 as
l–1/
�Uxx� /U�, is large, l
1 �recall the lattice spacing is 1 in
the present notation�. According to Eq. �9�, the latter condi-
tion implies �1/ �� � �−1�1 �i.e., strictly speaking, the CA
applies in the case when the competing nonlinearities in the
SM nearly cancel each other�.

It is relevant to note that, in the usually considered “non-
competitive” version of the SM, with ��0 �i.e., the self-
focusing intersite nonlinearity�, the CA yields solitons in the
entire semi-infinite band, ��0.

III. STATIONARY DISCRETE SOLITONS

In order to find discrete solitons in a numerical form, we
looked for solutions to Eq. �1� which are localized and time
periodic with frequency �b=2
 /Tb �11� �that is related to �
in the continuum equation by �b	�−2�. Soliton solutions
of this form are widely known for the DNLS limit ��=0�
and hence it is possible to make a numerical continuation of
such solutions for ��0 by adiabatic changes of the model
parameter � and successive applications of the shooting
method �12,13�. For this purpose we consider soliton solu-
tions of the above form as fixed points of the map TTb,�

defined as
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TTb,��n�t� = �n�t + Tb� , �11�

i.e., TTb,�
is the time-evolution operator over Tb of dynamics

dictated by Eq. �1�. Then, using usual techniques for finding
fixed points of maps �such as, e.g., the Newton-Raphson al-
gorithm� we can find the numerically exact soliton for a
given frequency �b and �. In general all the soliton solutions
were computed starting from the DNLS limit, �=0, and in-
creasing ��� at a fixed value of �b. The continuations were
performed using the shooting method, with an increment
���� � �=10−2 at each step, or smaller if higher accuracy was
needed.

As shown in the previous section, the soliton family in the
continuum Eq. �4� ends with the peakon solution �9�. To
compare the numerically determined shape of the discrete
solitons with the feasible peakon limit, we fitted the solitons
tails to the asymptotic form, ��n � =A exp�−���n−n0 � ��, with
constant A, �, and n0, which follows from the linearized
Eq. �1� for large �n�. This procedure yielded the decay rate,
�=��� ,�b�, amplitude, A=A�� ,�b� �and the center’s posi-
tion n0�, as functions of parameters � and �b of the soliton
family. Once A�� ,�b� and n0 were found, we defined
��� ,�b�	A− ��n0

� to measure a deviation of the true dis-
crete soliton from a conjectured peakon shape obtained by
formal extension of the tail inward.

In Fig. 1�a� we show the evolution of � produced by
several continuations of the lattice-soliton solutions �at dif-
ferent frequencies �b�. We define �p��b� as a value of � at
which an exact discrete peakon of internal frequency �b is
found, that we realize as vanishing of ��� ,�b� at �=�p. In
Fig. 1�b� we plot the evolution of the solitons amplitude as
the continuation is performed. It is observed that the ampli-
tude increases with ���, reaching the predicted value, 1 /
���,
at the exact peakon solution.

A noteworthy result, evident from Fig. 1, is the persis-
tence of the discrete solitons beyond the peakon limit �which
means continuability of the solutions to ��0�. The apparent
intersection of different curves at one point in Fig. 1�a� is a
spurious feature �see the inset in the figure�. An accurate
consideration shows that the curves actually intersect at close
but different points. In contrast, the intersection of the curves
in Fig. 1�b� indeed happens at a single point, which corre-
sponds to the discrete solitons taking the peakon shape.

Figure 2 displays typical examples of the numerically
found discrete solitons. It demonstrates that the solutions
corresponding to ��0 are cuspons, with a super-exponential
shape, that do not exist in the continuum Eq. �4�. The dis-
crete character of the SM with the competing nonlinearities
allows this type of solution �as happens with the quasicol-
lapsing states in the standard DNLS equation in two dimen-
sions �14��. Cuspon solutions continue into the region of
�� � �1, where the CA yields no solitons, but, due to the
sharp change of the solution with the increase of ���, finding
numerical solutions at larger values of ��� becomes increas-
ingly more difficult.

In Fig. 3�a� we compare the line of the existence of the
peakons in the continuum limit, and the actual location of
discrete peakons. It is seen that the agreement between the

CA and numerical findings is good for smaller ��b� �in this
case, the discrete solitons are broad�, while at larger ��b� the
discrete solitons are narrow, hence the agreement with the
CA deteriorates.

A. Stability of the solitons

We have performed stability analysis of the discrete soli-
tons by computing eigenvalues �Floquet multipliers, �F� for

FIG. 1. �a� The mismatch with the peakon shape, �, as a func-
tion of ���, for discrete solitons found at different frequencies �b.
�Note in the inset that there is no common intersection of all the
curves.� �b� The solitons amplitude vs ���. The axes are rescaled to
show that the amplitude of the peakon solutions �attained at
�� � = ��p�� are equal to 1/
���, as predicted by the continuum
approximation.

FIG. 2. Generic examples of three different types of discrete
solitons, for �b=−2.091: a quasicontinuous sechlike solution at
�� � =0.3, a peakon at �� � =0.956, and a cuspon at �� � =2.64.
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modes of small perturbations �15�, within the framework of
the linearized equation of the SM �1�. The integration of a
basis of initial perturbations over a period Tb of the discrete
soliton gives the Floquet matrix that in our case is real and
symplectic so that its eigenvalues come in quadruplets

��F ,1 /�F , �̄F ,1 / �̄F�. Then, the discrete soliton solution to
Eq. �1� is linearly stable if all the Floquet multipliers lie on
the unit circle of the complex plane, ��F � =1. It is found that
the solitons are linearly stable along the whole continuation,
except for a relatively small region, as shown in Fig. 4�a�.
The entire instability island in the ���b � , �� � � plane is dis-
played in Fig. 3�b�. Note, in particular, that the peakon and
cuspon solutions are stable. The stability of the discrete soli-
tons was also checked by direct simulations of perturbed
solitons, using the full Eq. �1�, which corroborated the pre-
dictions of the linear analysis.

Direct simulations of the evolution of perturbed unstable
solitons, a typical example of which is displayed in Fig. 4�b�,
show that, after a transient stage, a localized pulson �showing
simultaneous width and amplitude oscillations� is formed.
The pulsons are �quasi-�periodic in time, and persist indefi-
nitely. This behavior resembles that found in the ordinary
two-dimensional DNLS equation in quasicollapsing states
�14�.

A necessary stability condition for soliton families in
models of the NLS type may be provided by the Vakhitov-
Kolokolov �VK� criterion �16�. If the norm N of the soliton
is known as a function of its frequency �b, the solitons can
be stable against small perturbations with real eigenvalues,
provided that dN /d�b�0. Although the applicability of the
VK criterion to the present model has not been proven �and
counterexamples are known, when solitons predicted by the
criterion to be unstable are actually stable �17��, it is relevant

to test the criterion here, numerically computing N��b� ac-
cording to Eq. �2�. The result is that the VK criterion pre-
cisely explains the stability and instability of the discrete
solitons, except for the cuspons �see below�, as shown in Fig.
3�c�.

A noteworthy feature of the N��b� dependence is a diver-
gence of the total norm due to the infinite contribution of the
central site to expression �2� in the case of the exact peakon
solution, with ��n0

�2=1/ ���. An example of the N��b� de-
pendence showing the divergence is plotted in Fig. 5. As
concerns the cuspons, whose amplitude exceeds the critical
value, 1 /
���, the norm �2� converges for them, and features
a positive slope �see Fig. 5�, dN /d�b�0. The VK criterion
predicts instability in this case; however, the direct compu-
tation of the Floquet multipliers �see above�, as well as direct
simulations, reveal no instability of the cuspons. Thus, while
the VK criterion is perfectly correct for regular solitons and
peakons in the present model, it is irrelevant for cuspons, cf.
the situation in Ref. �17�.

B. Bound states of solitons and their stability

We have explored bound states of discrete solitons in Eq.
�1�. For this purpose, we performed numerical continuation
in �, starting with the well known bound states of the stan-
dard DNLS equation, at �=0. In that limit, two different
types of bound states are known, in-phase and

-out-of-phase ones, which are represented, respectively, by
even and odd solutions. It is well known that only the states
of the latter type are stable �18�.

The numerical continuation of soliton bound states was
performed for pairs of identical discrete solitons of a given
frequency �b and different distances between them. The con-

FIG. 3. �Color online� �a� The value of ��p�, at which the soliton assumes the peakon shape: the prediction of the continuum approxi-
mation, Eq. �10� �solid curve�, and numerical results for discrete solitons �dots�. Also shown is a small region, where the discrete solitons are
found to be unstable �for that purpose, the vertical axis shows ���, rather than ��p��. The inset displays the relative difference between the
numerically found values of ��p� and the prediction, ��p

CL�, provided by the continuum approximation. �b� Close-up of the area in the
���b � , �� � � plane where the instability island is located. �c� Norm of the discrete solitons vs the frequency, for �� � =0.884.
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tinuation of in-phase and out-of-phase bound states gives
bound states of peakons, see Fig. 6�a�. The latter solution is
found at exactly the same value, �=�p��b�, which gives rise
to the single peakon. We have also examined the stability
eigenvalues for the computed solutions. A remarkable feature
of the bound states observed with increase of ��� is the sta-
bility interchange between the in-phase and out-of-phase
states, as shown in Fig. 6�b�, which occurs precisely at �

=�p��b�, regardless of the separation between the bound
solitons.

IV. MOVING SOLITONS

The integrable AL model gives rise to both static and
moving solitons. In the DNLS equation, moving solitons
�19,20� and collisions between them �20� were also studied,
using various methods. Soliton motion was also a subject of
analysis in the SM, which was usually treated, in this con-
text, as a perturbed version of the AL equation �6,7�.

As a part of the present work, we have performed numeri-
cal continuation of mobile discrete solitons from the DNLS
limit, where, in turn, they were earlier obtained by means of
a continuation procedure initiated with the AL solitons �8�.
The continuation procedure is the natural extension of the
one applied to static discrete solitons �i.e., based on comput-
ing fixed points of maps by means of the shooting method�
and allows obtaining mobile solutions whose profiles are re-
peated �translated in a number of sites� after an integer num-
ber of periods of the internal oscillation. These states are
composed of a traveling localized core and an extended
background, �n=�n

core+�n
bckg �see Fig. 7�. The background

is a superposition of nonlinear plane waves, and its ampli-
tude is related to the height of the corresponding Peierls-
Nabarro �PN� barrier, which is defined as the energy differ-
ence between two static solutions for the soliton, with a fixed
frequency �b, one centered at a lattice site, with n0=n, and
the other at an intersite position, with n0=n±1/2.

The result obtained along these lines in the present model
is that the mobile solitons can only be continued up to a
certain critical value, �= �c��b�, close to but smaller in ab-
solute value than �p��b�, at which the static discrete soliton
becomes a peakon. The Floquet stability analysis reveals that
the extended background of the mobile solitons is subjected
to modulational instability. �However, this is too weak to
manifest itself in the simulations and it is only noticeable by
looking at the Floquet spectra when the amplitude of the
background is very high.� On the other hand we do not ob-
serve any localized eigenvector with eigenvalue ��F � �1 and
thus the core is not affected by any unstable perturbation.
The stability of mobile solutions is corroborated when simu-
lations of the dynamics are performed allowing for interest-
ing numerical experiments �see below�. The background am-
plitude is a growing function of ��� having a very sharp
increase when ��� approaches �= �c��b� �see Fig. 8�a��. This
behavior of the background amplitude suggests that the PN
barrier also grows with ��� and becomes very high near the
critical point. To check this expectation, we have computed
the height of the PN barrier for the same frequencies �b for
which the mobile solitons were numerically calculated, using
the energy definition as in Eq.�3�. Figure 8�b� confirms that
the PN barrier dramatically increases when the continuation
approaches the critical point, �= �c��b�, although the PN
barrier diverges not exactly at this point, but rather at
�=�p��b�, where the soliton assumes the peakon shape.

The strong dependence of the PN barrier on � suggests a
numerical experiment to test the behavior of mobile solitons
when the lattice’s pinning force suddenly changes. To this

FIG. 4. �a� The absolute value of the Floquet multiplier, ��F�, for
the linearization of perturbations around discrete solitons, is shown
vs ���, at several fixed values of the frequency �which are chosen so
as to make the instability intervals well separated�. The soliton is
unstable if ��F � �1. �b� A robust pulson generated from an unstable
soliton at �� � =0.922.

FIG. 5. The norm of the discrete solitons vs the frequency, for
�� � =0.884.
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end, we took an initial mobile soliton at values of � and �b
for which the PN barrier is low. Then we monitored the
evolution of the moving soliton following an instantaneous
change in the nonlinearity, �→�+��	��, which makes
the PN barrier essentially higher than experienced by the
original soliton. The numerical experiments are illustrated by
Fig. 9. We observe that the core of the mobile lattice soliton
does not become pinned due to the increase of the PN bar-
rier, but rather accommodates itself, with some radiation
loss, into a broader state with a smaller amplitude, so that the
PN barrier, as experienced by the new state for �=��, is low
enough to allow the soliton to remain mobile. Besides that,
we observe an increment in the core’s velocity, so that the
larger the jump of the PN-barriers height the faster is the new
moving state. The fact that the sudden increase of the PN
barrier does not prevent the motion of the soliton reveals, on
one hand, that the relation between the PN barrier and mo-
bility is far from trivial, and on the other hand, that mobility
is quite a robust feature.

Finally, we simulated collisions between identical lattice
solitons moving in opposite directions. The results show that
the colliding solitons always merge into a single localized

state, which subsequently features intrinsic pulsations. If the
PN barrier is low, the emerging pulse can itself move in a
chaotic way, due to interaction with the lattice phonon field
�radiation� generated in the course of the collision. On the
contrary, for values of � and �b at which the original soli-
tons experience a high PN barrier, the finally generated
single soliton is always strongly pinned.

The most notable and generic feature of the collision
manifests itself in the merger scenario. When the cores of the
mobile solitons collide, sudden delocalization is first ob-
served, with a transfer of energy from the collision point to
adjacent lattice sites. Then, almost all the energy is collected
back at the collision spot, and thus a single localized state
emerges. An example of the collision is shown in Fig. 10.
This scenario was observed in all simulations of the colli-
sions. The appearance of pulsons as the product of soliton

FIG. 6. �a� Profiles of typical in-phase �top� and out-of-phase �bottom� bound states of two peakons, with different distances between
their centers, at �b=−3.086 and �� � = ��p � =0.645. �b� Absolute values of the Floquet multipliers that determine the stability of three bound
states, with the same fixed frequency, �b=−3.086, and different separations between the solitons. The in-phase �top� and out-of-phase
�bottom� bound states are stabilized and destabilized, respectively, at the point where the bound solitons are peakons, see panel �a�. Unstable
states are less unstable �with smaller absolute values of the Floquet multipliers accounting for the instability� if the distance between the
solitons is larger.

FIG. 7. The real and imaginary parts of the lattice wave field in
a moving discrete soliton, for �b=−2.24 and �=−0.7.

FIG. 8. The background amplitude �a� and the height of the
Peierls-Nabarro barrier �b�, as functions of ���, for three mobile
discrete solitons.
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collisions, as well as the fact that they also appear as
asymptotic states of the evolution of perturbed unstable soli-
tons �see Sec. III A�, shows the ubiquity of this type of lo-
calized excitation in the present model.

V. CONCLUSION

We have shown, a combination of the DNLS and
Ablowitz-Ladik models with competing nonlinearities �self-
focusing onsite and self-defocusing intersite cubic terms�.
The model may describe a condensate of bosonic dipoles
trapped in a strong lattice potential. First, it was shown that
the continuum counterpart of the model gives rise to solitons
in a finite band of frequencies, with broad, small-amplitude
NLS-like solitons at one edge of the band, and an exact
solution in the form of a peakon at the other. Numerical
analysis of the discrete system yields a similar family of
solitons, which also includes a peakon; however, the family
continues beyond the peakon, in the form of discrete cus-
pons. Stability of the lattice solitons was investigated by
means of the computation of their Floquet spectra, and in
direct simulations. It was found that only a small part of the
soliton family is unstable; the evolution of the unstable

solitons leads asymptotically to pulsons, i.e., localized solu-
tions where the width oscillates. In particular, peakons and
cuspons are stable. Additionally, it was found that the
Vakhitov-Kolokolov criterion precisely explains the stability
and instability of regular solitons, but does not apply to cu-
spons, for which it erroneously predicts instability. Bound
states of identical solitons were also investigated, revealing a
stability exchange: the in-phase and out-of-phase bound
states, which are unstable and stable, respectively, in the
DNLS limit, exchange their stability character exactly at the
point where the bound solitons are peakons.

We have numerically computed mobile solitons with the
same high precision as for the static ones. Their structure is
that of an exponentially localized core on top of an extended
background �which is a superposition of a finite number of
extended plane waves�. The amplitude of the background is
correlated with the height of the computed Peierls-Nabarro
barrier. The mobile solitons exist up to a critical value of the
strength of the self-defocusing intersite nonlinearity, which is
lower than �but close to� the corresponding value for which
the peakon state exists. Collisions between solitons always
lead to their merger into a pulson state.
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FIG. 10. Contour plots showing the evolution of the lattice field
��n� in three cases of collisions between identical solitons moving
in opposite directions. The solitons frequency is �b=−2.11, and
�� � =0.6 �a�, �� � =0.8 �b�, and �� � =0.9 �c�.
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